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Hydrodynamic flow of materials, initiated by shock waves, is determined by their equation of state �EOS�.
For comparatively weak shocks, the zero-temperature isotherm and thermal motion of ions, mainly, determine
the EOS. However, in processes involving high energy density, as in inertial confinement fusion, astrophysical
phenomena, nuclear explosion, etc., very strong shocks �P� few megabars, T� few eV� are encountered.
Such shocks give rise to many thermal effects leading to dissociation of molecules, ionization of electrons,
radiation emission, etc., in addition to the quantum-mechanical pressure ionization in materials. Therefore,
hydrodynamics due to strong shocks crucially depend on the behavior of electrons and the radiation emitted by
the electrons. This paper aims at developing a simple but quantitative model of electronic binding in plasmas
and its effects on compressibility of materials. An improved version of the screened hydrogenic model is
developed for this purpose. The effect of radiation emission is incorporated using Stefan-Boltzmann law. The
Hugoniot of various elements such as Al, Be, Fe, etc., are, then, computed. These are in excellent agreement
with those obtained using sophisticated self-consistent field calculations, and the oscillations in Hugoniot are
shown to be due to ionization of electrons from different shells. Shell effects are also reflected in the variation
of electronic specific heat with temperature and the relation between shock velocity and fluid velocity. Further,
at very high temperature and pressure, equilibration between radiation and matter increases the compressibility
of materials. The limiting compression of all materials, via a strong shock, is found to be 7 unlike 4, which is
the limit for free-electron gas or ideal monoatomic gas. The model reported here can be employed in lieu of
Thomas-Fermi-type theories used in global EOS packages such as quotidian equation of state �QEOS�.
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I. INTRODUCTION

The behavior of matter under conditions of high density,
pressure, and temperature is an important aspect of all astro-
physical phenomena, inertial confinement fusion �ICF�, plan-
etary science, nuclear explosives, etc. All these phenomena
involve compression of materials by strong shocks �pressure:
P� few megabars, temperature: T� few eV�. For example,
pressure at the center of stars can be as high as tens or hun-
dreds of megabars �Mbars� at temperatures of few keV. In
the laboratory, conditions appropriate to high pressure or en-
ergy density are attained by launching strong shock waves.
In ICF experiments, high-energy-density states are achieved
where pressure is of the order of few Mbars during the im-
plosion phase and as high as million Mbars during the ex-
plosive phase. Under such extreme conditions, matter is ion-
ized during compression via thermal or pressure ionization
and is in the form of a dense plasma. The behavior of matter
in these conditions is mostly decided by the electrons present
in the plasma.

The response of a material to shock is expressed in terms
of the pressure-volume shock Hugoniot, which is the locus
of all the thermodynamic states that can be attained via
shock compression. This is obtained by solving the Rankine-
Hugoniot relations along with the equation of state �EOS�.
The Rankine-Hugoniot relations1 express the conservation
laws of mass, momentum, and energy across the shock front
and are given by

Ph − P0 = �0UsUp, �1�

Vh = V0�1 −
Up

Us
� , �2�

Eh − E0 =
1

2
�Ph + P0��V0 − Vh� , �3�

where P0 ,V0 ,E0, and Ph ,Vh ,Eh are, respectively, the pres-
sure, specific volume � 1

� �, and specific energy corresponding
to the undisturbed medium and shocked medium. �0 and �
are, respectively, the densities of the material before and af-
ter shock traversal. Us is the shock velocity and Up repre-
sents the particle velocity behind the shock. This set of three
equations in five variables can be solved with the addition of
the EOS of the material if one of these variables is treated as
independent. The complete EOS, which relates the various
thermodynamic parameters of the medium under equilibrium
condition, is expressed in terms of temperature T as2

P = P��,T� ,

E = E��,T� . �4�

It is noted that for most of the systems, T can be elimi-
nated and the EOS can be expressed in incomplete form, as
in the example of ideal gas P= ��−1��E, where � is the
specific-heat ratio. In this case, the limiting value of com-
pression ratio, defined as �=� /�0, that can be achieved by a
single shock is found, by solving the above set of equations,
as1

�limit =
� + 1

� − 1
. �5�

At high temperatures attained via strong shocks, it is use-
ful to invoke the free gas model of electrons for investigating
the Hugoniot, as was done very recently.3 Free electrons be-
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have as a monoatomic gas, specified by �= 5
3 . The compres-

sion ratio that can be attained by a single shock has a limit-
ing value �limit=4. This limit arises because all the energy
imparted by the shock is used up for increasing the kinetic
energy of electrons rather than compressing it. However, in
all materials, electrons are bound to the nuclei and matter can
also be in equilibrium with radiation at very high tempera-
tures and pressures.

In this paper, we investigate the combined consequences
of these two important effects. The paper is organized as
follows. Section II is devoted to determine the effect of ion-
ization of electrons on the shock Hugoniot using the simple
free gas model and, then, the screened hydrogenic model.
Section III investigates the effect of radiation on shock
Hugoniot. In Sec. IV, the results are given for Al in detail.
The effect of binding of electrons and radiation on Be and Fe
Hugoniot are also discussed. We find that pressure-density
shock Hugoniot shows oscillations due to shell effect, which
ultimately reaches the limiting compression �limit=7 in the
presence of radiation.

II. EFFECT OF ELECTRONS ON HUGONIOT

The EOS of materials can be expressed as a sum of the
zero temperature, or cold �T=0�, and thermal �T�0� parts

P = Pc��� + PT��,T� ,

E = Ec��� + ET��,T� . �6�

The cold pressure and energy arise due to the zero-point
lattice vibrations and the zero-temperature contribution of
electrons. Since the time scales for the dynamics of electrons
and ions differ significantly, the ionic and electronic parts
can be decoupled as

PT = Pion��,T� + Pel��,T� ,

ET = Eion��,T� + Eel��,T� . �7�

�1� Cold and Ionic EOS. The cold contribution to the EOS
is accurately determined from the scaled binding-energy
model.4 The specific energy and pressure within this model
are given by

Ec = Ecoh�1 + ��a�� ,

Pc = − 3kB0
���a�

�1 + ka�2 , �8�

where

��a� =
e−a�� + �a + �a2 + 	a3�

�1 + ka�2 ,

k =
l

R0
,

l = � EcohAmp

12
B0R0
�1/2

,

a =
r − R0

l
. �9�

Here Ecoh ,B0, and l are, respectively, the cohesive energy of
the solid bulk modulus at normal density and scale length.
� ,� ,�, and 	 are parameters which are obtained from equi-
librium conditions. R0 is the Wigner-Seitz �WS� cell radius
defined below in Eq. �12�.

The ionic contribution is obtained using the mean-field
theory.5,6 The free energy in this formalism is given by

Fion = − �T�3

2
ln� m�T

2
�2� + ln Vf�V,T�� ,

Vf = 4
	 e−g�r,V�/�Tr2dr ,

g�r,V� =
Ec�R + r� + Ec�R − r� − 2Ec�R�

2
. �10�

The pressure Pion, entropy Sion, and energy Eion can be cal-
culated from free energy as

Pion = − � �Fion

�V
�

T

,

Sion = − � �Fion

�T
�

V

,

Eion = Fion + TSion. �11�

�2� Electronic EOS. We have adapted the average atom
model �AAM� to calculate the electronic contribution to the
EOS. In AAM, the volume of plasma is divided into WS
cells, each containing one nucleus of atomic number Z and
mass number A. There are Z number of electrons in each WS
cell which ensures charge neutrality within the cell. The ra-
dius �R0� of the WS cell is determined by the density of the
material and is given by

VWS =
4

3

R0

3 =
A

NA�
, �12�

where NA=Avogadro’s number. In the AAM, all the plasma
properties are averaged over the WS cells. So, it is sufficient
to calculate the electronic contribution to EOS only from a
single cell. The cell can contain both bound and free elec-
trons. The free energy and specific energy corresponding to
the electronic part of EOS can be expressed as7

Fel = Ff��,T� + Fb��,T� + Fb−f��,T� ,

Eel = Ef��,T� + Eb��,T� + Eb−f��,T� , �13�

where the first two terms are the contributions from free
electrons and bound electrons, respectively, and the last term
is introduced to account for the effect of plasma environment
on the bound electronic energy levels. This effect is called
continuum lowering, which is discussed in last subsection of
Sec. II.
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For thermodynamic consistency, pressure is obtained from
the free energy as

Pel = − � �Fel

�V
�

T

. �14�

�i� Free-electron EOS. The free electrons in the WS cell
are treated as noninteracting Fermi gas. So, the free energy
and specific energy are given by3,8

Ff = C1V��T�5/2� 	

�T
I1/2�	/�T� −

2

3
I3/2�	/�T�� , �15�

Ef =
C1

�
��T�5/2I3/2�	/�T� , �16�

where 	 is the chemical potential of the electrons and � is
Boltzmann constant. At a particular temperature, 	 is deter-
mined implicitly in terms of number of free electrons N in
the WS cell,8 i.e.,

N =
C2

�
��T�3/2I1/2�	/�T� . �17�

The constants C1 and C2 and Fermi-Dirac integrals, I3/2 and
I1/2, are given by

C1 =
4
�2me�3/2

h3 , �18�

C2 =
4
A�2me�3/2

NAh3 , �19�

In��� =
1

��n + 1�	0

� xn

1 + ex−�dx , �20�

where ��n+1� is the gamma function, me and h are, respec-
tively, the electron mass and Planck constant. The numerical
values of C1 and C2 are computed such that specific energy
and pressure are in units of 1012 erg /gm and Mbar, respec-
tively.

From Eq. �16�, it can be seen that the free electrons be-
have as an ideal monoatomic gas with �= 5

3 . However, the
dependence of specific energy on temperature and, conse-
quently, temperature on the Hugoniot is different from that of
ideal gas.

�ii� Bound-electron EOS. The bound electrons have been
treated extensively using the self-consistent electronic struc-
ture methods within the average atom model, including rela-
tivistic effects and the effect of plasma outside the cell
boundary.9,10 The principal effect of electron binding is to
introduce oscillations in the Hugoniot arising because of the
shell structure of electronic “orbits.” Though varying degrees
of sophistication in treating electrons give rise to important
differences in the Hugoniot, the general features are quite
similar.

The simplest method to incorporate electronic binding,
including Coulomb repulsion, is the screened hydrogen
model �SHM�.11 The calculation of screening constants has
been improved by several authors.7,12 Thus, the SHM to-

gether with schemes to incorporate thermal and pressure ion-
ization provides a simple approach for calculating the effect
of binding of electrons on high pressure EOS.7 Earlier use of
the SHM for calculating the Hugoniot13 was based on ap-
proximate treatment of l splitting14–16 due to angular momen-
tum �l�. The calculations reported in this paper make use of
the most recent compilation of screening constants, which
are based on the entire available database of ionization po-
tentials and binding energies. More importantly, a complete
treatment of l splitting is included in the data fitting proce-
dures for obtaining the screening constants.17

The population of electrons among various bound levels
at any finite temperature and density is obtained using Fermi-
Dirac distribution and a density dependent degeneracy func-
tion. The latter is important to account for the pressure
ionization,7,18 which plays a significant role in shock com-
pression of matter. The SHM is also a good starting point to
go beyond the average atom model by introducing the num-
ber distribution of various ionic species in a plasma.19 One of
the aims in this paper is to show that SHM provides quite
accurate bound energy levels and hence can be used in lieu
of Thomas-Fermi model in global EOS packages such as
QEOS.20,21

A. Screened hydrogenic model

The SHM treats the interaction between bound electrons
and the nucleus in a multielectron atom by an effective
Coulomb-type potential �

Zk

r �. An appropriate screened charge
�Zk� is determined for each quantum state k= �nk , lk�, where
nk and lk denote the principal and angular-momentum quan-
tum numbers, respectively.7,17 The screened charge takes into
account the interaction of a particular electron with other
electrons present in the multielectron system. The effect of
this interaction is only to screen the actual charge of nucleus
seen by an electron in a particular level. The effective
nuclear charge for an electron, i.e., screened charge Zk, is
thus always less than the actual charge of the nucleus. The
single-particle energy Ek, screened charge Zk, and the popu-
lation in the shell Pk, etc., in SHM formulation, are given
by17

�k = −
Zk

2

2nk
2 + 


1

Kmax

�kk�Pk�

Zk�

nk�
2 , �21�

Zk = Z − 

1

Kmax

�kk��Pk� − fk�kk�� , �22�

Pk = fkDk. �23�

The screening coefficient �kk� determines the strength of
screening in level k by electrons in level k�.17 Dk and fk are,
respectively, the factors determining pressure and thermal
ionization.7,18 The factor Dk represents the shell degeneracy
of level k for a given density and is discussed in detail in
Sec. II B. fk gives the average occupation probability of level
k at a particular temperature T. This is given by the Fermi-
Dirac distribution
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fk =
1

1 + exp���k + Eb−f − 	�/�T�
. �24�

The term Eb−f, introduced to account for the continuum
lowering,18,22 is discussed in �iii�.

Total energy of the bound electrons and the orbital radius
of level k are given by

Eb = − 

1

Kmax

Pk

Zk
2

2nk
2 , �25�

rk =
a0

2Zk
�3nk

2 − lk�lk + 1��; a0 = Bohr radius. �26�

Finally, the number of free electrons in the WS cell is ob-
tained as

Z0 = Z − 

k

fkDk. �27�

For a specified density and temperature of the plasma, Z0 is
determined via a self-consistent solution of the SHM. The
chemical potential 	 is then found using Eq. �17� with N
=Z0.

B. Pressure ionization

Pressure ionization is the phenomenon of ionization of
electrons due to increase in density of the material. When
density is increased, the interatomic separation decreases al-
lowing the electrons of neighboring atoms to interact
strongly. Because of the strong interaction and Pauli’s exclu-
sion principle, the bound states localized near the boundary
are altered to a great extent. The localized states are delocal-
ized and a band is formed due to the broadening of energy
levels and the electrons are set free. This effect is usually
called pressure ionization. These free electrons give an addi-
tional contribution to pressure. The consequence of this ef-
fect is to continuously ionize the electrons such that the shell
degeneracy Dk decreases gradually from gk=2�2lk+1� to
zero. Therefore, Dk must be a function of density of the
plasma and can be expressed as

Dk = gk�k��� . �28�

A simple form for the density dependent factor �k is based
on the results for the degree of ionization obtained using the
Thomas-Fermi model7

�k = �1 + �ar0k/R0�b�−1, �29�

where r0k is the orbital radius in free atom and a and b are
adjustable constants. Another form, based on Wentzel, Kram-
ers, and Brillouin �WKB� calculation of tunneling between
bound levels, is given by18

�k��� = 1 − exp�− 2
 � R0�1 −
r0k

R0
�2�, r0k � R0

= 0, r0k � R0.

We have adapted this expression as it has no free parameters
and it approaches zero smoothly at the WS cell boundary.

Bound electrons are distributed in various shells within
the WS cell according to Fermi-Dirac distribution, with av-
erage population fk and shell degeneracy Dk. Therefore, the
entropy of bound electrons can be written as8

Sb = − � 
 Dk�fk log fk + �1 − fk�log�1 − fk�� . �30�

As the total binding energy of bound electron is known,
the free energy is given by

Fb = Eb − TSb. �31�

�iii� Continuum lowering function. The last term in Eq.
�13� denotes continuum lowering. It accounts for the effect
of plasma environment on the bound-electron levels. In gen-
eral, electrons bound as well as free and ions outside the WS
cell and free electrons inside the same cell affect the bound-
electron levels significantly. We neglect the effect of outside
charges and consider that the levels are influenced only by
the presence of free electrons inside the same WS cell. The
repulsive interaction between electrons makes a positive con-
tribution on the bound energy levels. So the levels are shifted
up in energy and in effect the continuum is lowered. There
are detailed methods based on Thomas-Fermi model22 to
quantify the effect of continuum lowering. However, we
have adapted a simple form,18 where it is assumed that the
ion is placed inside a uniformly charged sphere containing Z0
free electrons. This yields

Fb−f =
3

5

Z0e2

R0
. �32�

The total free energy �Fel� can be obtained from Eqs. �16�,
�31�, and �32�. Then pressure, calculated using Eq. �14�, is
given by

Pel = Pf + Pb + Pb−f , �33�

where

Pf = C1
2

3
��T�5/2I3/2�	/�T� ,

Pb = − �T

k

log�1 − fk�
�Dk

�V
,

Pb−f =
1

40


Z0
2e2

R0
4 .

III. EFFECT OF RADIATION ON HUGONIOT

At high densities and temperatures, matter exists in
plasma state. The electrons in the plasma produce radiation
on heating via bremsstrahlung and also reach equilibrium
with the plasma via inverse bremsstrahlung and Compton
scattering processes. The time scale for the equilibration of
radiation with matter is generally of the order of 10−13 to
10−15 s. This time scale is negligible in comparison to the
time scale of shock propagation 10−9 to 10−6 s and hence,
justifies the assumption that matter exists in equilibrium with
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radiation.23 Under equilibrium condition, the energy density
of radiation depends on the temperature of the material.
When an intense shock is launched, the temperature becomes
so high that the energy density and pressure of radiation
become comparable to the internal energy and pressure of
electrons, thereby affecting both the EOS and Hugoniot.

�iv� EOS of electron-radiation system. In the presence of
radiation, the specific energy and pressure of electron-
radiation system are given by

E = Eel + Erad,

P = Pel + Prad. �34�

Specific energy and pressure of electrons are given by Eqs.
�13� and �14�. The pressure and energy density of equilib-
rium radiation can be obtained using Stefan-Boltzmann law,
which is valid as pointed out earlier. Then, the energy density
of radiation is given by24

W = a��T�4. �35�

The value of radiation constant a=137.999 when �T and W
are expressed in keV and 1012 ergs /cm3, respectively. Spe-
cific energy and pressure of �equilibrium� radiation are given
by

Erad =
W

�
,

Prad =
1

3
�Erad.

This shows that �equilibrium� radiation will respond to
shock1 as a monoatomic gas with �= 4

3 , where as � for a
free-electron gas is 5

3 . That is, the EOS for a free-electron gas
is

Pf =
2

3
�Ef , �36�

where Ef is given by Eq. �16�. Thus, the EOS of the electron-
radiation system becomes

P = ��2

3
Ef +

1

3
Erad� , �37�

E = Ef + Erad. �38�

Equations �16� and �35� determine the relative importance
of electron pressure or radiation pressure through the tem-
perature of the medium. Thus, while the shock-induced com-
pressibility is given by electron pressures at low temperature,
the contributions from radiation will be the determining fac-
tor at high temperatures.24

IV. RESULTS AND DISCUSSION

A. Thermal and pressure ionizations

Using the SHM formulation, the set of nonlinear equa-
tions are solved self-consistently for different temperatures

and densities to obtain the degree of ionization. Figure 1�a�
shows the thermal ionization curves of Al �Z=13,A=27,�0
=2.7 gm /cc� for different densities �0.001�0���600�0�.
Similarly, Fig. 1�b� shows the pressure ionization curves for
Al for the temperatures in the range �0.001�T�keV��6�.
The plateaus in these curves correspond to the ionization of
different electronic shells. For Al, there are two plateaus cor-
responding to M and L shell ionization.

B. EOS energy and pressure

Figures 2�a� and 2�b� show the variation of energy and
pressure with compression for Al for different temperatures
in the range �0.001�T�keV��4�. The shell structure, evi-
dent from the plots, vanishes at very high temperature and
compression as all the shells are ionized.

An important point to be noted from Fig. 2�b� is that there
is no abrupt change in pressure due to ionization of the
shells. This is because of the properly chosen form of the
degeneracy parameter Dk, which allows continuous merging
of bound levels into continuum with increasing density.

C. Shock Hugoniot and effects of radiation

For investigating the effect of electron binding on Hugo-
niot, Eq. �3� is to be solved in conjunction with Eq. �33� for
electron pressure. This has been done for each temperature
step in the interval 2.5�10−5�T�keV��15. The results for
Al �Z=13,A=27� are shown in Figs. 3�a� and 3�b� without
and including the effects of radiation. The Hugoniot corre-
sponding to the free-electron gas �for N=13�, without any
electron binding, is also shown in Fig. 3�a�.

The actual Hugoniot of Al lies below that of the free-
electron gas. This is physically correct because binding of

0.01 0.1 1 10
0

4

8

12

1E-3 0.01 0.1 1 10 100
0

4

8

12

16

(a)
(5)

(4)

(3)

(2)

Z
0

T(Kev)

Al

(1)

(b)(5)

(4)
(3)

(2)
(1)

Z
0

Al

FIG. 1. �a� Ionization curves vs temperature for Al ��0

=2.7 gm /cc� at different compressions. Curves marked �1� to �5�
are for �=0.001, 0.1, 10, 100, and 600, respectively. �b� Ionization
curves vs compression for Al at various temperatures. Curves
marked �1� to �5� are for T=0.001, 0.01, 0.1, 1, and 6 keV,
respectively.
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electrons reduces the pressure required for compressing to
same density in comparison to that in fully ionized case.

Again, the free-electron Hugoniot shows a limiting com-
pression of 4 ��limit=4� at very high pressures where as
Hugoniot of Al indicates that higher compression can be
achieved. This is a consequence of absorption of internal
energy for ionizing the shells. However, as the shells are
ionized, more and more electrons are set free. The increase in
pressure due to release of more free electrons opposes com-
pression. At some point, this opposing “force” dominates

over the amount of internal energy absorbed, thereby de-
creasing further compression of the material. The oscillations
appearing in the Hugoniot are due to the shell ionization. At
extreme pressures, the Hugoniot will join that of the free
electrons. Temperature along the Hugoniot is also shown in
the figure.

As seen from Fig. 3�a�, the SHM is also validated against
the experimental data21 for Al. Theoretically calculated val-
ues show good agreement with the experimental data for low
pressure and temperature. The experimental results for very
high temperature and pressure, generally obtained from
nuclear explosions, have large error bars.

The Hugoniot relation given by Eq. �3� can be solved
together with Eq. �37� at different temperatures. The result-
ing Hugoniot for Al is shown in Fig. 3�b�, which shows that
equilibrium radiation affects compression after about
104 Mbars. This is also seen from the temperature along the
Hugoniot shown in the figure. It is clear that for temperature
T�1 keV, the radiation contributes significantly to the
EOS. This is because the radiation energy density increases
as fourth power of the material temperature. At temperatures
where the radiation effect is quite dominant, the compress-
ibility of the system increases because of the comparatively
lower value of �= 4

3 for photon gas. Thus the limiting com-
pression becomes 7 in comparison to 4 for free electrons.

For temperature ��20 eV�, electron contribution be-
comes comparable to the cold and ionic contributions. At T
�150 eV, first shell ionization takes place and around T
�550 eV, second shell of Al gets ionized. At T�1 keV, all
the shells are ionized and the system behaves as a mono-
atomic gas with the limiting compression of 4.

More results of calculations of Hugoniot in presence of
radiation are shown in Fig. 4�a� for Fe and Fig. 4�b� for Be,
respectively. As expected, the limiting compression in all
cases is now 7. Plots of electron and radiation pressures
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FIG. 2. �a� Pressure and �b� specific internal energy of Al vs
compression at different temperatures. Curves marked �1� to �5� are
for T=0.001, 0.01, 0.1, 1, and 4 keV, respectively.

FIG. 3. �a� Hugoniot of Al vs compression. Solid line represents
theoretical Hugoniot, empty circles represent low-pressure experi-
mental data, and half-filled circles represent experimental data at
high pressures. Upper curve with squares is Hugoniot for free-
electron gas with 13 electrons. �b� Hugoniot in presence of radia-
tion. Empty and half filled circles denote the experimental data
�Refs. 10 and 21�.
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FIG. 4. �a� Line with filled circles is Hugoniot of free-electron
gas �N=26�, line with squares is Hugoniot of combined system of
free electrons and radiation. Line with empty circles is the Hugoniot
of Fe �Z=26,A=56� with electron binding and solid line is Hugo-
niot for Fe in the presence of radiation. �b� Same as above but for
Be �Z=4,A=9�.
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against Hugoniot temperatures are also given for Be and Al
in Figs. 5�a� and 5�b�, which clearly illustrate the crossover
to radiation pressure at higher temperatures ��4 KeV�.

Number of oscillations in the Hugoniot depends on the
number of shells present in the atom. For Be �Z=4, A
=9, �0=1.85 gm /cc�, there is a single oscillation, as
shown in Fig. 4�b�, at a temperature of 175 eV corresponding
to the K-shell ionization. For Al �Z=13, A=27, �0
=2.74 gm /cc�, there are two oscillations corresponding to
K-shell and L-shell ionizations around 150 and 550 eV, re-
spectively. For Be we get a maximum compression �limit
4.6 without radiation, while it is around 5.4 for Al. These
values are in excellent agreement with more detailed and
sophisticated calculations.9 The Hugoniot for Fe �Z=26, A
=56, �=7.88 gm /cc� given in Fig. 4�a� shows three oscil-
lations due to the ionization of K ,L ,M shells. In Fe, the
L-shell effect is more prominent than K and M shells. This is
because the number of electrons in this shell is compara-
tively larger than in K and M shells. Hence, more amount of
internal energy is absorbed, allowing a comparatively higher
degree of compression.

D. Electronic specific heat

The electronic specific heat per atom at constant volume
is given by

Cv
el

�3�

2
� = � �Eel

�T
�

V

.

Figure 6 shows the variation of
Cv

el

�3�
2

�
with temperature on

Hugoniot for Al. This plot carries the signature of quantum
shell effect. As we go along the Hugoniot, temperature in-
creases and more number of electrons become free thereby
increasing the specific heat. At a temperature around
�150 eV, corresponding to ionization of L shell, the
specific-heat curve has a weak hump. As the temperature is
increased further, a sharp peak appears at around �550 eV.
This peak corresponds to the ionization of the 1s shell which
is a strongly bound level. The height of the peak in the
specific-heat curve is determined by the ionization potential
of this shell. Since the ionization energy of the 3s and 2p
levels are not very high, their effect is not pronounced as
compared to that of 1s and 2s levels. The occurrence of the
pronounced peak in the specific-heat curve is called
“Schottky anomaly.” When all the electrons are ionized at
high temperature, the system behaves as a monoatomic gas
with 13 electrons and specific heat approaches the value 13
asymptotically.

E. Shock speed vs particle speed

The shock speed and particle speed behind the shock are,
respectively, given by1

Us =��h�Ph − P0�
�0��h − �0�

,

Up =
Ph − P0

�0Us
.

We have investigated the variation of the difference Us−Up
with particle speed Up for Al and the results are shown in
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FIG. 5. �a� Line with circles is electronic part of Al EOS and
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Hugoniot. The crossover temperature is at T�5 keV. �b� Same as
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“Schottky anomaly.”
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Fig. 7 together with experimental values. There is good
agreement between the two sets of data. The presence of
weak oscillations shows that the variation of Us with Up is
not linear. Shell effects, which lead to the oscillations, are
not pronounced because Us vs Up curves are not very sensi-
tive to the material property.

V. CONCLUSION

We have shown that the SHM can accurately describe the
behavior of bound electrons in a plasma. Our results show
that in the intermediate temperature range �0.02�T�keV�
�1�, the electrons play a significant role in deciding the

compressibility of matter. At higher temperatures, it is the
radiation pressure which plays the main role and this in-
creases compressibility. We also infer the general principle:
compressibility of a material depends on the available inter-
nal degrees of freedom which can absorb energy from the
shock. The more the number of degrees of freedom, the more
is the attainable compression. Unlike in the case of free elec-
trons, addition of radiation and binding effects leads to
higher compression at relatively lower shock pressures. This
conclusion can still be improved upon by incorporating rela-
tivistic effects and the interaction between free electrons,
which are important for heavier elements such as uranium.

Most of the EOS packages use Thomas-Fermi �TF� model
to incorporate the effect of electrons on the EOS of materials
under shock compression. As TF model is a statistical model,
it does not reproduce the shell effects in the Hugoniot curves.
However, the shell effect can be seen clearly when the elec-
tron binding and pressure ionization are accounted correctly.
Though there are self-consistent field methods, which give
results close to the experimental values, these are generally
not suitable for in-line calculation. The model we have pre-
sented gives almost the same accuracy as offered by self-
consistent field calculations. The accuracy attained can be
improved further by refining pressure ionization scheme. Fi-
nally we note that the SHM, with explicit treatment of l
splitting as done in this paper, can be used in lieu of TF
model in global EOS packages such as QEOS.
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